34 research outputs found

    Structural characterization of helices A and B of Kv7.2 channel bound to Calmodulin. The calcium effect

    Get PDF
    217 p.Los canales neuronales heterodiméricos Kv7.2 y Kv7.3 son el sustrato molecular de la corriente depotasio no-inactivante dominada ¿Corriente M¿. Ésta juega un papel crítico en el control de laexcitabilidad neuronal. Su mal funcionamiento desencadena consecuencias fatales causantes deenfermedades como la epilepsia neonatal benigna (BFNC) que pueden estar asociadas a encefalopatias yretraso mental. La calmodulina es una proteína auxiliar sensible al calcio que es esencial para el correctoensamblaje, tráfico y función de dichos canales. Mientras que la compresión de la regulación de estoscanales ha alcanzado niveles razonables debido a estudios bioquímicos y electrofisiológicos, poco se sabesobre la estructura y conformación. El propósito de la presente tesis es el aumentar los conocimientosestructurales de los canales Kv7.2 con la meta de mejorar el entendimiento de cómo se da la regulaciónpor calcio de estos canales, y a su vez mejorar el conocimiento de los mecanismos por los que ciertaspatologías ocurren. Para ello la tesis presenta tres fases: 1) Mejora de la expresión recombinante del Cterminaldel canal, que se ha conseguido gracias a la coexpresion de la calmodulina y de la region Cterminaldel canal. 2) Caracterización estructural del complejo CaM/Hélices_AB mediante RMN, dondese observa cómo la calmodulina abraza dos helices del C-terminal (A y B) que están orientadas de maneraantiparalela. 3) Estudio del impacto del calcio sobre el complejo donde se demuestra que no se dancambios drásticos grandes en el complejo, con lo que se puede deducir que la señalización por calcio hade ser un mecanismo más sutil, posiblemente mediante cambios en las dinámicas locales o mediantemecanismos alostéricos

    Structural characterization of helices A and B of Kv7.2 channel bound to Calmodulin. The calcium effect

    Get PDF
    217 p.Los canales neuronales heterodiméricos Kv7.2 y Kv7.3 son el sustrato molecular de la corriente depotasio no-inactivante dominada ¿Corriente M¿. Ésta juega un papel crítico en el control de laexcitabilidad neuronal. Su mal funcionamiento desencadena consecuencias fatales causantes deenfermedades como la epilepsia neonatal benigna (BFNC) que pueden estar asociadas a encefalopatias yretraso mental. La calmodulina es una proteína auxiliar sensible al calcio que es esencial para el correctoensamblaje, tráfico y función de dichos canales. Mientras que la compresión de la regulación de estoscanales ha alcanzado niveles razonables debido a estudios bioquímicos y electrofisiológicos, poco se sabesobre la estructura y conformación. El propósito de la presente tesis es el aumentar los conocimientosestructurales de los canales Kv7.2 con la meta de mejorar el entendimiento de cómo se da la regulaciónpor calcio de estos canales, y a su vez mejorar el conocimiento de los mecanismos por los que ciertaspatologías ocurren. Para ello la tesis presenta tres fases: 1) Mejora de la expresión recombinante del Cterminaldel canal, que se ha conseguido gracias a la coexpresion de la calmodulina y de la region Cterminaldel canal. 2) Caracterización estructural del complejo CaM/Hélices_AB mediante RMN, dondese observa cómo la calmodulina abraza dos helices del C-terminal (A y B) que están orientadas de maneraantiparalela. 3) Estudio del impacto del calcio sobre el complejo donde se demuestra que no se dancambios drásticos grandes en el complejo, con lo que se puede deducir que la señalización por calcio hade ser un mecanismo más sutil, posiblemente mediante cambios en las dinámicas locales o mediantemecanismos alostéricos

    From 1,4-Disaccharide to 1,3-Glycosyl Carbasugar : Synthesis of a Bespoke Inhibitor of Family GH99 Endo-α-mannosidase

    Get PDF
    Understanding the enzyme reaction mechanism can lead to the design of enzyme inhibitors. A Claisen rearrangement was used to allow conversion of an α-1,4-disaccharide into an α-1,3-linked glycosyl carbasugar to target the endo-α-mannosidase from the GH99 glycosidase family, which, unusually, is believed to act through a 1,2-anhydrosugar "epoxide" intermediate. Using NMR and X-ray crystallography, it is shown that glucosyl carbasugar α-aziridines can act as reasonably potent endo-α-mannosidase inhibitors, likely by virtue of their shape mimicry and the interactions of the aziridine nitrogen with the conserved catalytic acid/base of the enzyme active site

    Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectin-1

    Get PDF
    The interaction of human galectin-1 with a variety of oligosaccharides, from di-(N-acetyllactosamine) to tetra-saccharides (blood B type-II antigen) has been scrutinized by using a combined approach of different NMR experiments, molecular dynamics (MD) simulations, and isothermal titration calorimetry. Ligand- and receptor-based NMR experiments assisted by computational methods allowed proposing three-dimensional structures for the different complexes, which explained the lack of enthalpy gain when increasing the chemical complexity of the glycan. Interestingly, and independently of the glycan ligand, the entropy term does not oppose the binding event, a rather unusual feature for protein-sugar interactions. CLEANEX-PM and relaxation dispersion experiments revealed that sugar binding affected residues far from the binding site and described significant changes in the dynamics of the protein. In particular, motions in the microsecond-millisecond timescale in residues at the protein dimer interface were identified in the presence of high affinity ligands. The dynamic process was further explored by extensive MD simulations, which provided additional support for the existence of allostery in glycan recognition by human galectin-1.This research was supported by the European Research Council (ERC-2017-AdG, project 788143-RECGLYCANMR to J.J.-B.), Agencia Estatal Investigacion of Spain (AEI; grant RTI2018-094751-B-C21 to J.J.-B., RTI2018-099592-B-C22 to G.J.O, RTI2018-101269-B-I00 to O. M., and Ramon y Cajal Contract to A. A.) and the Severo Ochoa Excellence Accreditation (SEV-2016-0644 to J.J.-B.). We also thank Instituto de Salud Carlos III of Spain, ISCIII (grant PRB3 IPT17/0019 to A. G.) and the Mizutani Foundation for Glycoscience (grant 200077 to G.J.O.)

    Disulfide driven folding for a conditionally disordered protein

    Get PDF
    Altres ajuts: ICREA, ICREA-Academia 2015 to S.V.Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity

    Contribution of shape and charge to the inhibition of a family GH99 endo-α-1,2-mannanase

    Get PDF
    [Image: see text] Inhibitor design incorporating features of the reaction coordinate and transition-state structure has emerged as a powerful approach for the development of enzyme inhibitors. Such inhibitors find use as mechanistic probes, chemical biology tools, and therapeutics. Endo-α-1,2-mannosidases and endo-α-1,2-mannanases, members of glycoside hydrolase family 99 (GH99), are interesting targets for inhibitor development as they play key roles in N-glycan maturation and microbiotal yeast mannan degradation, respectively. These enzymes are proposed to act via a 1,2-anhydrosugar “epoxide” mechanism that proceeds through an unusual conformational itinerary. Here, we explore how shape and charge contribute to binding of diverse inhibitors of these enzymes. We report the synthesis of neutral dideoxy, glucal and cyclohexenyl disaccharide inhibitors, their binding to GH99 endo-α-1,2-mannanases, and their structural analysis by X-ray crystallography. Quantum mechanical calculations of the free energy landscapes reveal how the neutral inhibitors provide shape but not charge mimicry of the proposed intermediate and transition state structures. Building upon the knowledge of shape and charge contributions to inhibition of family GH99 enzymes, we design and synthesize α-Man-1,3-noeuromycin, which is revealed to be the most potent inhibitor (K(D) 13 nM for Bacteroides xylanisolvens GH99 enzyme) of these enzymes yet reported. This work reveals how shape and charge mimicry of transition state features can enable the rational design of potent inhibitors

    Redox regulation of KV7 channels through EF3 hand of calmodulin

    Get PDF
    Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site-mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the calcium responsive domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2, or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET (Fluorescence Resonance Energy Transfer) between helices A and B using purified CRDs tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+ but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2, or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data are consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.Ministerio de Ciencia e Innovacion PID2021-128286NB-100Wellcome Trust 212302/Z/18/ZMedical Research Centre MR/P015727/1Eusko Jaurlaritza IT1707-22 Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza BG2019Ministerio de Ciencia e Innovacion RTI2018-097839-B-100Ministerio de Ciencia e Innovacion RTI2018-101269-B-I00Eusko Jaurlaritza IT1165-19 Ekonomiaren Garapen eta Lehiakortasun Saila,Eusko Jaurlaritza KK-2020/00110Eusko Jaurlaritza PRE_2018-2_0082Eusko Jaurlaritza POS_2021_1_0017Eusko Jaurlaritza PRE_2018-2_012

    Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor

    Get PDF
    Polyglutamine (polyQ) tracts are low-complexity regions and their expansion is linked to certain neurodegenerative diseases. Here the authors combine experimental and computational approaches to find that the length of the androgen receptor polyQ tract correlates with its helicity and show that the polyQ helical structure is stabilized by hydrogen bonds between the Gln side chains and main chain carbonyl groups

    An epoxide intermediate in glycosidase catalysis

    Get PDF
    Retaining glycoside hydrolases cleave their substrates through stereochemical retention at the anomeric position. Typically, this involves two-step mechanisms using either an enzymatic nucleophile via a covalent glycosyl enzyme intermediate or neighboring-group participation by a substrate-borne 2-acetamido neighboring group via an oxazoline intermediate; no enzymatic mechanism with participation of the sugar 2-hydroxyl has been reported. Here, we detail structural, computational, and kinetic evidence for neighboring-group participation by a mannose 2-hydroxyl in glycoside hydrolase family 99 endo-α-1,2-mannanases. We present a series of crystallographic snapshots of key species along the reaction coordinate: a Michaelis complex with a tetrasaccharide substrate; complexes with intermediate mimics, a sugar-shaped cyclitol β-1,2-aziridine and β-1,2-epoxide; and a product complex. The 1,2-epoxide intermediate mimic displayed hydrolytic and transfer reactivity analogous to that expected for the 1,2-anhydro sugar intermediate supporting its catalytic equivalence. Quantum mechanics/molecular mechanics modeling of the reaction coordinate predicted a reaction pathway through a 1,2-anhydro sugar via a transition state in an unusual flattened, envelope (E 3) conformation. Kinetic isotope effects (k cat/K M) for anomeric-2H and anomeric-13C support an oxocarbenium ion-like transition state, and that for C2-18O (1.052 ± 0.006) directly implicates nucleophilic participation by the C2-hydroxyl. Collectively, these data substantiate this unprecedented and long-imagined enzymatic mechanism

    Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting

    Get PDF
    26 p.-6 fig.-1 tab.-1 graph. abst.There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)—the principal methyl donor—acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.M.V.-R. is supported by Proyecto PID2020-119486RB-100 (funded by MCIN/AEI/10.13039/501100011033), Gilead Sciences International Research Scholars Program in Liver Disease, Acción Estratégica Ciberehd Emergentes 2018 (ISCIII), Fundación BBVA, HORIZON-TMA-MSCA-Doctoral Networks 2021 (101073094), and Redes de Investigación 2022 (RED2022-134485-T). M.L.M.-C. is supported by La CAIXA Foundation (LCF/PR/HP17/52190004), Proyecto PID2020-117116RB-I00 (funded by MCIN/AEI/10.13039/501100011033), Ayudas Fundación BBVA a equipos de investigación científica (Umbrella 2018), and AECC Scientific Foundation (Rare Cancers 2017). A.W. is supported by RTI2018-097503-B-I00 and PID2021-127169OB-I00, (funded by MCIN/AEI/10.13039/501100011033) and by “ERDF A way of making Europe,” Xunta de Galicia (Ayudas PRO-ERC), Fundación Mutua Madrileña, and European Community’s H2020 Framework Programme (ERC Consolidator grant no. 865157 and MSCA Doctoral Networks 2021 no. 101073094). C.M. is supported by CIBERNED. P.A. is supported by Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT1476-22), PID2021-124425OB-I00 (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe,” MCI/UE/ISCiii [PMP21/00080], and UPV/EHU [COLAB20/01]). M.F. and M.G.B. are supported by PID2019-105739GB-I00 and PID2020-115472GB-I00, respectively (funded by MCIN/AEI/10.13039/501100011033). M.G.B. is supported by Xunta de Galicia (ED431C 2019/013). C.A., T.L.-D., and J.B.-V. are recipients of pre-doctoral fellowships from Xunta de Galicia (ED481A-2020/046, ED481A-2018/042, and ED481A 2021/244, respectively). T.C.D. is supported by Fundación Científica AECC. A.T.-R. is a recipient of a pre-doctoral fellowship from Fundación Científica AECC. S.V.A. and C.R. are recipients of Margarita Salas postdoc grants under the “Plan de Recuperación Transformación” program funded by the Spanish Ministry of Universities with European Union’s NextGeneration EU funds (2021/PER/00020 and MU-21-UP2021-03071902373A, respectively). T.C.D., A.S.-R., and M.T.-C. are recipients of Ayuda RYC2020-029316-I, PRE2019/088960, and BES-2016/078493, respectively, supported by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro. S.L.-O. is a recipient of a pre-doctoral fellowship from the Departamento de Educación del Gobierno Vasco (PRE_2018_1_0372). P.A.-G. is recipient of a FPU pre-doctoral fellowship from the Ministry of Education (FPU19/02704). CIC bioGUNE is supported by Ayuda CEX2021-001136-S financiada por MCIN/AEI/10.13039/501100011033. A.B.-C. was funded by predoctoral contract PFIS (FI19/00240) from Instituto de Salud Carlos III (ISCIII) co-funded by Fondo Social Europeo (FSE), and A.D.-L. was funded by contract Juan Rodés (JR17/00016) from ISCIII. A.B.-C. is a Miguel Servet researcher (CPII22/00008) from ISCIII.Peer reviewe
    corecore